Stop Searches in the Compressed Region

Hsin-Chia Cheng University of California, Davis

w/ Christina Gao, Lingfeng Li, Nicolas Neill, arXiv:1604.00007 and Lingfeng Li, Qin Qin, arXiv:1607.06547

4th International Workshop on Dark Matter, Dark Energy, and Matter-Antimatter Asymmetry Dec. 29-31, 2016

Introduction

- Supersymmetry (SUSY) is one of the most promising candidates for new physics beyond the standard model.
 - Solution to the hierarchy problem.
 - Lightest SUSY particle is a dark matter candidate if R-parity is conserved.
 - Gauge coupling unification.
 - Consistent with a light Higgs.

Stop Searches

Stop may be the most hunted particle after the Higgs discovery for the hierarchy problem

 Stop heavier than 800 GeV would imply finetuning worse than 10%.

Stop in the Compressed Region

• Constraints are weak for $m_{\tilde{t}_1} \approx m_t + m_{\tilde{\chi}_1^0}$

t, $\tilde{\chi}_1^0$ are static in the stop rest frame, so they move together in the lab frame, with $\frac{p_{\tilde{\chi}}}{p_{\tilde{t}}} \approx \frac{m_{\tilde{\chi}}}{m_{\tilde{t}}}$

For direct pair-production, stops are back-to-back in the transverse plane. The p_T of the two $\tilde{\chi}_1^0$'s cancel, leaving little MET. It just looks like top pair production.

Recoiling against a Hard Jet

K. Hagiwara & T. Yamada, 1307.1553 H. An & L.-T. Wang, 1506.00653 S. Macaluso, M. Park, D. Shih, B. Tweedie, 1506.07885

 Some MET will arise if the stop pair are produced with a hard ISR jet.

$$p_{T\tilde{t}}(1) + p_{T\tilde{t}}(2) = -p_T(J_{\rm ISR})$$

$$p_{T\tilde{\chi}}(1) + p_{T\tilde{\chi}}(2)$$
$$\approx (p_{T\tilde{t}}(1) + p_{T\tilde{t}}(2)) \frac{m_{\tilde{\chi}}}{m_{\tilde{t}}}$$

All Hadronic Channel

 Select events with all hadro sin decaying tops, with MET antiparalleleto ISR on the transverse exp(-BR_M) plane^z. $R_M \equiv \frac{p_T'}{p_T(J_{\rm ISR})}$ $R_M pprox rac{m_{ ilde{\chi}}}{m_{ ilde{t}_0}}$ for signal 0.5 0.6 0.7 0.8 0.9 R_{M} $R_M \approx 0$ for $t\bar{t}$ background

ISR

single top

All Hadronic Channel

• ATLAS applied this method in Run 2 analysis.

Semileptonic Channel

HC, Christina Gao, Lingfeng Li, Nicolas Neill, arXiv:1604.00007

 The neutrino from the top decay gives extra MET, but its momentum can be solved.

$$p_{T (IISR)} \qquad p_{T}^{\parallel} \left[= p_{T\nu}^{\parallel} + p_{T\tilde{\chi}}^{\parallel}(1) + p_{T\tilde{\chi}}^{\parallel}(2) \right] \parallel p_{T}(J_{ISR})$$

$$p_{T}^{\perp} = p_{T\nu}^{\perp} + 3 \text{ mass shell conditions:}$$

$$p_{\nu}^{2} = 0, \qquad \text{Can be reduced to}$$

$$(p_{\ell}^{2} + p_{\nu})^{2} = m_{W}^{2}, \qquad \text{a single quadratic}$$

$$p_{\tau}^{\parallel} (p_{b} + p_{\ell} + p_{\nu})^{2} = m_{t}^{2}. \quad \text{equation for } E_{\nu}.$$

$$P_{T}(\tilde{x}_{l})^{+p_{\tau}}(\tilde{x}_{l}) \qquad \text{After obtaining } p_{T\nu}, \text{ we subtract it from } p_{T}',$$

$$and define$$

$$\bar{R}_{M} \equiv \frac{p_{T}' - p_{T\nu}}{p_{T}(J_{ISR})} \approx \frac{m_{\tilde{\chi}}}{m_{\tilde{t}}}$$

A Case Study

 $m_{\tilde{t}} = 400 \text{ GeV}$ $m_{\tilde{\chi}^0} = 226.5 \text{ GeV}$ $\bar{R}_{M,\text{theory}} \approx 0.57$

Signal and Background Simulations

- Signals and backgrounds are simulated with MadGraph 5, Pythia 8 and Delphes 3.
- SM backgrounds:
 - *tt* (semileptonic)
 - *tt* (dileptonic)
 - single top production
 - (Multi)-vector bosons with jets
 - *tt* production with an extra vector boson
- Signal in the compressed region
 - Stop pair (semileptonic)

Event Selections

- One isolated lepton, at least 4 jets with one or more b tags. Events with τ jets are vetoed
- ► $p_T(J_{ISR}) \ge 475 \text{GeV}, p_T(J_{2,3}) \ge 60 \text{GeV}, p_{Tl} \ge 10 \text{ GeV}$
- ► MET > 200 GeV
- $|\phi_{J_{\rm ISR}} \phi_{\rm MET}| \ge 2$
- $|\phi_l \phi_{\text{MET}}| \ge 0.9$
- Choose the solution with greater E_{v} , but with $p_{Tv} < 180 \text{ GeV}, p_{Tv} < 6 p_{Tl}$
- For more than 1 b jets that give solutions, choose the one with a smaller \overline{R}_M .

Azimuthal Distributions

If MET only comes from one neutrino, it tends to be close to the lepton, due to the boosted W.

Lepton Energies

- ► MET \ge 200 GeV
- Choose the solution with bigger E_{ν}

Result

Compared to hadronic channel

Significance vs Background Uncertainty

Moving along $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} \approx m_t$

Moving away from $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} \approx m_t$

Significances

$m_{\tilde{t}}$ (GeV)	250	300	350	400	450	500	550	600
$\sigma_{m_{\tilde{t}}-(m_{\tilde{\chi}}+m_t)=0}$	19.7	15.8	11.0	8.4	5.8	5.1	3.8	2.1
$\sigma_{m_{\tilde{t}}-(m_{\tilde{\chi}}+m_t)=-30}$	22	19	13	11	7.2	4.7	3.1	1.7
$\sigma_{m_{\tilde{t}}-(m_{\tilde{\chi}}+m_t)=30}$	—	7.6	5.3	3.3	2.4	1.7	1.3	0.9

for 13 TeV, 300 fb⁻¹

$$\begin{array}{l} \bullet \quad \text{If} \ m_{\tilde{\chi}} \geq m_{\tilde{t}} - m_t, \ \text{choose} \ \frac{m_{\tilde{\chi}}}{m_{\tilde{t}}} - 0.15 < \bar{R}_M < 1 \\ \bullet \quad \text{If} \ m_{\tilde{\chi}} < m_{\tilde{t}} - m_t, \ \text{choose} \ \frac{m_{\tilde{t}} - m_t}{m_{\tilde{t}}} - 0.15 < \bar{R}_M < 1 \end{array}$$

$$\sigma = \sqrt{2\left[\left(S+B\right)\log\left(\frac{S+B}{B}\right) - S\right]}$$

$\tilde{t}_2, \, \tilde{b}_1$ Searches with a Stealth \tilde{t}_1

HC, Lingfeng Li, Qin Qin, arXiv: 1607.06547

- To solve the naturalness problem, both stops and the left-handed sbottom cannot be too heavy.
- If \tilde{t}_1 is stealth, \tilde{t}_2 and \tilde{b}_1 may be accessible.
- ATLAS and CMS have searched \tilde{t}_2 , \tilde{b}_1 using simplified models with the decay channels:

$$\begin{split} \tilde{t}_2 &\to \tilde{t}_1 + Z \text{ or } h \\ \tilde{b}_1 &\to b + \tilde{\chi}_1^0, \\ \tilde{b}_1 &\to t + \tilde{\chi}_1^{\pm}, \\ \tilde{b}_1 &\to b + \tilde{\chi}_2^0, \quad \tilde{\chi}_2^0 \to \tilde{\chi}_1^0 + h \end{split}$$

Stop/Sbottom Spectrum

 In MSSM, if both stops are light, a large left-right mixing term X_t=A_t-μcotβ is needed to get 125 GeV Higgs. The stop-sbottom spectrum will be split by X_t.

Stop/Sbottom Spectrum

• A typical spectrum and the major decay chains:

Assuming Bino-like $\rightarrow \tilde{\chi}_1^0$

 More complicated decay chains if additional neutralinos and charginos are present.

 \Rightarrow Simplified models seldom are good approximations for the stop/sbottom system.

 M.Adeel Ajaib, T. Li and Q. Shafi, 1104.0251; E.Alvarez and Y. Bai, 1204.5182; H. M. Lee, V. Sanz and M. Trott, 1204.0802; X. J. Bi, Q. S. Yan and P. F.Yin, 1209.2703; J. Guo, Z. Kang, J. Li, T. Li, 1308.3075; B.Dutta et al., 1507.01001; T. Han, S. Su, Y. Wu, B. Zhang and H. Zhang, 1507.04006; H. Li, W. Parker, Z. Si and S. Su, 1009.6042; A. Datta and S. Niyogi, 1111.0200; J. Beuria, A. Chatterjee, A. Datta and S. K. Rai, 1505.00604; J. Beuria, A. Chatterjee and A. Datta, 1603.08463

Useful Signal Channels

013b: no lepton, ≥ 3b jets, additional jets & large MET

- gluon searches —— with decays thru bottom
- **113b**: 1 lepton, \geq 3b jets, additional jets & MET, M_T >160 GeV
- **Z2b**: 2 OSSF leptons forming a Z, \geq 2b jets, additional jets & MET
- SS+nb: same-sign dileptons, ≥ 1b jets, additional jets & MET
- *Multi-l*: \geq 3 leptons, \geq 1b jets, MET

 \succ current $ilde{t}_2$ \checkmark searches

used for \tilde{b}_1 searches, but different spectrum and decay chains

SS2I Excesses in Run I

 SS2I excesses present in Run I ATLAS and CMS SUSY searches, *tth* searches, and ATLAS exotica search.

SS2I Excesses in Run 2

• SS2I excesses persist in Run 2 ATLAS and CMS *tth* searches, though no excess in SUSY searches.

Possible Interpretations

- Simplified model in ATLAS and CMS SUSY searches: $\tilde{b} \rightarrow t + \tilde{\chi}^- \rightarrow t + W^- + \tilde{\chi}_1^0$
 - but $\tilde{b} \rightarrow b + \tilde{\chi}_{2,1}^0$ always compete and they give stronger constraints.
- P. Huang, A. Ismail, I. Low, C. Wagner, 1507.01601

$$\begin{aligned} \tilde{t}_1 &\to t + \tilde{\chi}_2^0 \to t + W^{\pm} + \tilde{\chi}_1^{\mp} \\ \downarrow & \downarrow & \downarrow \\ \tilde{t}_R & \tilde{B} & \tilde{W} \end{aligned}$$

 $m_{\tilde{t}_1} \approx 550 \,\text{GeV}, \ m_{\tilde{\chi}_2^0} \approx 340 \,\text{GeV}, \ m_{\tilde{\chi}_1^\pm} \approx m_{\tilde{\chi}_1^0} \approx 260 \,\text{GeV}$ $\mu(8 \,\,\text{GeV}) = 2.83$

Example Spectra

Decay branching ratios

Final state percentages

	A 1	A2
$\sigma(ilde{t}_2 ilde{t}_2)(fb)$	33.8	19.4
ttZZ	55.5	22.6
ttZWW	24.6	40.0
ttZh	8.8	3.7
tt4W	2.7	17.6
tthWW	1.9	3.3
tthh	0.4	0.1
$\sigma(ilde{b}_1 ilde{b}_1)(fb)$	94.5	85.2
ttWW	98	81
tbW	2	19.6

Spectrum	A 1	A2	
$m_{ ilde{t}_2}({ m GeV})$	815.4	887.1	
$m_{{\widetilde b}_1}({ m GeV})$	693.0	704.5	
$m_{ ilde{t}_1}({ m GeV})$	491.0	605.5	
$m_{ ilde{\chi}_1^0}({ m GeV})$	304.9	414.2	
$X_t/m_{ ilde{t}}$	-1.81	1.58	
$m_h({ m GeV})$	122.8	122.7	

Channel	A 1	A2	
$ ilde{t}_2 ightarrow ilde{b}_1 + W^+$	16.5	42.0	
$ ilde{t}_2 ightarrow ilde{t}_1 + Z$	74.5	47.6	
$\tilde{t}_2 ightarrow \tilde{t}_1 + h$	5.9	3.9	
$ ilde{t}_2 ightarrow t + ilde{\chi}_1^0$	3.1	6.5	
$ ilde{b}_1 ightarrow ilde{t}_1 + W^-$	99	90.1	
$ ilde{b}_1 o b + ilde{\chi}_1^0$	1.0	9.9	

Signal Strengths for Benchmarks

SS2I signal strength compared to SM *tth* @ I3 TeV

Spectrum	A1	A2
$m_{ ilde{t}_2}({ m GeV})$	815.4	887.1
$m_{ ilde{b}_1}({ m GeV})$	693.0	704.5
$m_{ ilde{t}_1}({ m GeV})$	491.0	605.5
$m_{ ilde{\chi}_1^0}({ m GeV})$	304.9	414.2
$X_t/m_{ ilde{t}}$	-1.81	1.58
$m_h({ m GeV})$	122.8	122.7

A1:A2: $\mu_{\tilde{b}_1} \approx 1.1$ $\mu_{\tilde{b}_1} \approx 0.6$ $\mu_{\tilde{t}_1} \approx 0.3$ $\mu_{\tilde{t}_1} \approx 0.2$ $\mu_{\text{tot}} \approx 2.4$ $\mu_{\text{tot}} \approx 1.8$

CMS 2LSS

 $\mu = 2.7^{+1.1}_{-1.0}$

ATLAS 210T $\mu = 4.0^{+2.1}_{-1.7}$

Conclusions

- There are gaps in stop searches at low masses. Natural SUSY could still be alive before they are ruled out.
- New methods to cover these gaps need to be developed.
- Searches for the heavier stop and the sbottom are also important. The simplified models that the current searches are based are often not good approximations to realistic models. A combination of various search channels is needed to cover the ground.